Exercise Set

8

Sourcept Reinforcement Classify each of the following statements as either true or false.

- 1. The graph of $f(x) = 3x^2 x + 6$ opens upward. Frue
- 2. The function given by $g(x) = -x^2 + 3x + 1$ has a minimum value. False
- 3. The graph of $f(x) = -2(x-3)^2 + 7$ has its vertex at (3, 7). True
- 4. The graph of $g(x) = 4(x + 6)^2 2$ has its vertex at (-6, -2). True
- 5. The graph of $g(x) = \frac{1}{2}(x \frac{3}{2})^2 + \frac{1}{4}$ has $x = \frac{1}{4}$ as its axis of symmetry. False
- 6. The function given by $f(x) = (x 2)^2 5$ has a minimum value of -5. True
- 7. The y-intercept of the graph of $f(x) = 2x^2 6x + 7$ is (7, 0). False
- 8. If the graph of a quadratic function f opens upward and has a vertex of (1, 5), then the graph has no x-intercepts. True

Complete the square to write each function in the form $f(x) = a(x-h)^2 + k.$ 9. $f(x) = x^2 - 8x + 2$ $f(x) = (x - 4)^2 + (-14)$ **10.** $f(x) = x^2 - 6x - 1$ $f(x) = (x - 3)^2 + (-10)$ **11.** $f(x) = x^2 + 3x - 5$ $f(x) = (x - (-\frac{3}{2}))^2 + (-\frac{29}{4})^2$ **12.** $f(x) = x^2 + 5x + 3$ $f(x) = (x - (-\frac{5}{2}))^2 + (-\frac{13}{4})^3$ **13.** $f(x) = 3x^2 + 6x - 2$ $f(x) = 3(x - (-1))^2 + (-5)$ **14.** $f(x) = 2x^2 - 20x - 3$ $f(x) = 2(x - 5)^2 + (-53)$ 15. $f(x) = -x^2 - 4x - 7 f(x) = -(x - (-2))^2 + (-3)$ Use a graphing calculator to find the vertex of the graph **16.** $f(x) = -2x^2 - 8x + 4$ $f(x) = -2(x - (-2))^2 + 12$ 17. $f(x) = 2x^2 - 5x + 10$ $f(x) = 2(x - \frac{5}{4})^2 + \frac{55}{8}$ **18.** $f(x) = 3x^2 + 7x - 3$ $f(x) = 3(x - (-\frac{7}{6}))^2 + (-\frac{85}{12})^2$ For each quadratic function, (a) find the vertex and the

axis of symmetry and (b) graph the function. **19.** $f(x) = x^2 + 4x + 5$ **20.** $f(x) = x^2 + 2x - 5$ **47.** $f(x) = -0.2x^2 + 1.4x - 6.7$ (3.5, -4.25) **21.** $f(x) = x^2 + 8x + 20$

23.
$$h(x) = 2x^2 - 16x + 25$$

24. $h(x) = 2x^2 + 16x + 23$
25. $f(x) = -x^2 + 2x + 5$
26. $f(x) = -x^2 - 2x + 7$
27. $g(x) = x^2 + 3x - 10$
28. $g(x) = x^2 + 5x + 4$
29. $h(x) = x^2 + 7x$
30. $h(x) = x^2 - 5x$
31. $f(x) = -2x^2 - 4x - 6$
32. $f(x) = -3x^2 + 6x + 2$

22. $f(x) = x^2 - 10x + 21$

FOR EXTRA HELP

For each quadratic function, (a) find the vertex, the axis of symmetry, and the maximum or minimum function value and (b) graph the function.

Math XP

MvMathLab

33. $g(x) = x^2 - 6x + 13$. 34. $g(x) = x^2 - 4x + 5$. **35.** $g(x) = 2x^2 - 8x + 3$ **36.** $g(x) = 2x^2 + 5x - 1$ **37.** $f(x) = 3x^2 - 24x + 50$. **38.** $f(x) = 4x^2 + 16x + 13$ • **39.** $f(x) = -3x^2 + 5x - 2$ • 40. $f(x) = -3x^2 - 7x + 2$ **41.** $h(x) = \frac{1}{2}x^2 + 4x + \frac{19}{3}$. **42.** $h(x) = \frac{1}{2}x^2 - 3x + 2$ \Box

of each function.

43. $f(x) = x^2 + x - 6$ (-0.5, -6.25) 44. $f(x) = x^2 + 2x - 5$ (-1, -6) **45.** $f(x) = 5x^2 - x + 1$ (0.1, 0.95) **46.** $f(x) = -4x^2 - 3x + 7$ (-0.375, 7.5625) **48.** $f(x) = 0.5x^2 + 2.4x + 3.2$ (-2.4, 0.32)

Answers to Exercises 19–42 are on pp. IA-19 and IA-20.

Find any x-intercepts and the y-intercept. If no x-intercepts **75.** Gravity, state this.

- **49.** $f(x) = x^2 6x + 3$ **50.** $f(x) = x^2 + 5x + 2$ **51.** $g(x) = -x^2 + 2x + 3$ (-1,0), (3,0); (0,3) **53.** $f(x) = x^2 - 9x$ (0,0), (9,0); (0,0) **55.** $h(x) = -x^2 + 4x - 4$ **54.** $f(x) = x^2 - 7x$ (0,0), (7,0); (0,0) **55.** $h(x) = -2x^2 - 20x - 50$ **57.** $g(x) = x^2 + x - 5$ **58.** $g(x) = 2x^2 + 3x - 1$ **59.** $f(x) = 2x^2 - 4x + 6$ **60.** $f(x) = x^2 - x + 2$
- **59.** $f(x) = 2x^2 4x + 6$ No *x*-intercept; (0, 6) **60.** $f(x) = x^2 - x + 2$ No *x*-intercept; (0, 2) **61.** The graph of a quadratic function *f* opens downward and has no *x*-intercepts. In what quadrant(s) must the vertex lie? Explain your reasoning.
- 1 62. Is it possible for the graph of a quadratic function to have only one *x*-intercept if the vertex is off the *x*-axis? Why or why not?

SKILL REVIEW

To prepare for Section 8.8, review solving systems of three equations in three unknowns (Section 3.4).

Solve. [3.4]

63. x + y + z = 3, 64. x - y + z = -6, x - y + z = 1,2x + y + z = 2, 3x + y + z = 0-x - y + z = -1(1, 1, 1)(-2, 5, 1)66. 7 = -5. 65. z = 8. x + y + z = 23,2x - y + 3z = -27x + 2y + 7z = -262x + y - z = 17(-3, 6, -5)(10, 5, 8)67. 1.5 = c, **68.** $\frac{1}{2} = c$, 52.5 = 25a + 5b + c5 = 9a + 6b + 2c7.5 = 4a + 2b + c29 = 81a + 9b + c(2.4, -1.8, 1.5) $\left(\frac{1}{3}, \frac{1}{6}, \frac{1}{2}\right)$ SYNTHESIS

- **™ 69.** If the graphs of two quadratic functions have the same *x*-intercepts, will they also have the same vertex? Why or why not?
- **1N** 70. Suppose that the graph of $f(x) = ax^2 + bx + c$ has $(x_1, 0)$ and $(x_2, 0)$ as *x*-intercepts. Explain why the graph of $g(x) = -ax^2 - bx - c$ will also have $(x_1, 0)$ and $(x_2, 0)$ as *x*-intercepts.
- For each quadratic function, find (a) the maximum or minimum value and (b) the x- and y-intercepts. Round to the nearest hundredth.

71. $f(x) = 2.31x^2 - 3.135x - 5.89$

72.
$$f(x) = -18.8x^2 + 7.92x + 6.18$$

73.
$$g(x) = -1.25x^2 + 3.42x - 2.79$$

74.
$$g(x) = 0.45x^2 - 1.72x + 12.92$$
 :

⊡ Answers to Exercises 49, 50, 56–58, 71–74, and 78–83 are on p. IA-20.

75. Graph the function

$$f(x) = x^2 - x - 6$$

Then use the graph to approximate solutions to each of the following equations.

a)
$$x^2 - x - 6 = 2$$
 -2.4, 3.4
b) $x^2 - x - 6 = -3$ -1.3, 2.3

76. Graph the function

$$f(x) = \frac{x^2}{2} + x - \frac{3}{2}.$$

Then use the graph to approximate solutions to each of the following equations.

a)
$$\frac{x^2}{2} + x - \frac{3}{2} = 0$$
 -3,1
b) $\frac{x^2}{2} + x - \frac{3}{2} = 1$ -3.4,1.4
c) $\frac{x^2}{2} + x - \frac{3}{2} = 2$ -3.8,1.8

Find an equivalent equation of the type

$$f(x) = a(x - h)^{2} + k.$$
77. $f(x) = mx^{2} - nx + p$
 $f(x) = f(x) = m\left(x - \frac{n}{2m}\right)^{2} + \frac{4mp - n^{2}}{4m}$
78. $f(x) = 3x^{2} + mx + m^{2}$

- 79. A quadratic function has (-1, 0) as one of its intercepts and (3, -5) as its vertex. Find an equation for the function.
- 80. A quadratic function has (4, 0) as one of its intercepts and (-1, 7) as its vertex. Find an equation for the function.

Graph.

81.
$$f(x) = |x^2 - 1|$$

82. $f(x) = |x^2 - 3x - 4|$
83. $f(x) = |2(x - 3)^2 - 5|$

