8.7

Concept Reinforcement Classify each of the

 following statements as either true or false.1. The graph of $f(x)=3 x^{2}-x+6$. opens upward.
2. The function given by $g(x)=-x^{2}+3 x+1$ has a minimum value. False
3. The graph of $f(x)=-2(x-3)^{2}+7$ has its vertex at $(3,7)$. True
4. The graph of $g(x)=4(x+6)^{2}-2$ has its vertex at $(-6,-2)$. True
5. The graph of $g(x)=\frac{1}{2}\left(x-\frac{3}{2}\right)^{2}+\frac{1}{4}$ has $x=\frac{1}{4}$ as its axis of symmetry. False
6. The function given by $f(x)=(x-2)^{2}-5$ has a minimum value of -5 . True
7. The y-intercept of the graph of $f(x)=2 x^{2}-6 x+7$ is $(7,0)$. False
8. If the graph of a quadratic function f opens upward and has a vertex of $(1,5)$, then the graph has no x-intercepts. True

Complete the square to write each function in the form $f(x)=a(x-h)^{2}+k$.
9. $f(x)=x^{2}-8 x+2 \quad f(x)=(x-4)^{2}+(-14)$
10. $f(x)=x^{2}-6 x-1 \quad f(x)=(x-3)^{2}+(-10)$
11. $f(x)=x^{2}+3 x-5 \quad f(x)=\left(x-\left(-\frac{3}{2}\right)\right)^{2}+\left(-\frac{29}{4}\right)$
12. $f(x)=x^{2}+5 x+3 \quad f(x)=\left(x-\left(-\frac{5}{2}\right)\right)^{2}+\left(-\frac{13}{4}\right)$
13. $f(x)=3 x^{2}+6 x-2 \quad f(x)=3(x-(-1))^{2}+(-5)$
14. $f(x)=2 x^{2}-20 x-3 \quad f(x)=2(x-5)^{2}+(-53)$
15. $f(x)=-x^{2}-4 x-7 f(x)=-(x-(-2))^{2}+(-3)$
16. $f(x)=-2 x^{2}-8 x+4 \quad f(x)=-2(x-(-2))^{2}+12$
17. $f(x)=2 x^{2}-5 x+10 \quad f(x)=2\left(x-\frac{5}{4}\right)^{2}+\frac{55}{8}$
18. $f(x)=3 x^{2}+7 x-3 \quad f(x)=3\left(x-\left(-\frac{7}{6}\right)\right)^{2}+\left(-\frac{85}{12}\right)$

For each quadratic function, (a) find the vertex and the axis of symmetry and (b) graph the function.
19. $f(x)=x^{2}+4 x+5$
20. $f(x)=x^{2}+2 x-5$
21. $f(x)=x^{2}+8 x+20$
22. $f(x)=x^{2}-10 x+21$
23. $h(x)=2 x^{2}-16 x+25$
24. $h(x)=2 x^{2}+16 x+23$
25. $f(x)=-x^{2}+2 x+5$
26. $f(x)=-x^{2}-2 x+7$
27. $g(x)=x^{2}+3 x-10$
28. $g(x)=x^{2}+5 x+4$
29. $h(x)=x^{2}+7 x$
30. $h(x)=x^{2}-5 x$
31. $f(x)=-2 x^{2}-4 x-6$
32. $f(x)=-3 x^{2}+6 x+2$

For each quadratic function, (a) find the vertex, the axis of symmetry, and the maximum or minimum function value and (b) graph the function.
33. $g(x)=x^{2}-6 x+13$
34. $g(x)=x^{2}-4 x+5$
35. $g(x)=2 x^{2}-8 x+3$
36. $g(x)=2 x^{2}+5 x-1$
37. $f(x)=3 x^{2}-24 x+50$
38. $f(x)=4 x^{2}+16 x+13$
39. $f(x)=-3 x^{2}+5 x-2$
40. $f(x)=-3 x^{2}-7 x+2$
41. $h(x)=\frac{1}{2} x^{2}+4 x+\frac{19}{3}$
42. $h(x)=\frac{1}{2} x^{2}-3 x+2$

Ase a graphing calculator to find the vertex of the graph of each function.
43. $f(x)=x^{2}+x-6 \quad(-0.5,-6.25)$
44. $f(x)=x^{2}+2 x-5 \quad(-1,-6)$
45. $f(x)=5 x^{2}-x+1 \quad(0.1,0.95)$
46. $f(x)=-4 x^{2}-3 x+7 \quad(-0.375,7.5625)$
47. $f(x)=-0.2 x^{2}+1.4 x-6.7 \quad(3.5,-4.25)$
48. $f(x)=0.5 x^{2}+2.4 x+3.2 \quad(-2.4,0.32)$

Find any x-intercepts and the y-intercept. If no x-intercepts exist, state this.
49. $f(x)=x^{2}-6 x+3$
50. $f(x)=x^{2}+5 x+2$
51. $g(x)=-x^{2}+2 x+3$
52. $g(x)=x^{2}-6 x+9$
53. $f(x)=x^{2}-9 x$
54. $f(x)=x^{2}-7 x$
$(3,0) ;(0,9)$
55. $(0,0),(9,0) ;(0,0)$
$(2,0) ;(0,-4)$
56. $h(x)=-2 x^{2}-20 x-50$
57. $g(x)=x^{2}+x-5$
58. $g(x)=2 x^{2}+3 x-1$
59. $f(x)=2 x^{2}-4 x+6$
60. $f(x)=x^{2}-x+2$
No x-intercept; $(0,2)$
. The graph of a quadratic function f opens downward and has no x-intercepts. In what quadrant(s) must the vertex lie? Explain your reasoning.

TW 62. Is it possible for the graph of a quadratic function to have only one x-intercept if the vertex is off the x-axis? Why or why not?

SKILL REVIEW

To prepare for Section 8.8, review solving systems of three equations in three unknowns (Section 3.4).
Solve. [3.4]
63. $x+y+z=3$,
64. $x-y+z=-6$,
$x-y+z=1$,
$-x-y+z=\frac{1}{(1,1,1)}$

$$
\begin{align*}
& 2 x+y+z=2 \\
& 3 x+y+z=0 \tag{-2,5,1}
\end{align*}
$$

66. $z=-5$,
$2 x-y+3 z=-27$,
$x+2 y+7 z=-26$
67. $\begin{aligned} & \frac{1}{2}=c, \\ & 5=9 a+6 b+2 c, \\ & 29=81 a+9 b+c \\ & \left(\frac{1}{3}, \frac{1}{6}, \frac{1}{2}\right)\end{aligned}$
68. $z=8$,
$x+y+z=23$,
$2 x+y-z=17$
$(10,5,8)$
69. $1.5=c$,
$52.5=25 a+5 b+c$, $7.5=4 a+2 b+c$
$(2.4,-1.8,1.5)$

SYNTHESIS

75. Graph the function

$$
f(x)=x^{2}-x-6
$$

Then use the graph to approximate solutions to each of the following equations.
a) $x^{2}-x-6=2 \quad-2.4,3.4$
b) $x^{2}-x-6=-3 \quad-1.3,2.3$
76. Graph the function

$$
f(x)=\frac{x^{2}}{2}+x-\frac{3}{2}
$$

Then use the graph to approximate solutions to each of the following equations.
a) $\frac{x^{2}}{2}+x-\frac{3}{2}=0 \quad-3,1$
b) $\frac{x^{2}}{2}+x-\frac{3}{2}=1 \quad-3.4,1.4$
c) $\frac{x^{2}}{2}+x-\frac{3}{2}=2 \quad-3.8,1.8$

Find an equivalent equation of the type

$$
f(x)=a(x-h)^{2}+k
$$

77. $f(x)=m x^{2}-n x+p$
78. $f(x)=3 x^{2}+m x+m^{2}$
79. A quadratic function has $(-1,0)$ as one of its intercepts and $(3,-5)$ as its vertex. Find an equation for the function.
80. A quadratic function has $(4,0)$ as one of its intercepts and $(-1,7)$ as its vertex. Find an equation for the function.

Graph.

81. $f(x)=\left|x^{2}-1\right|$
82. $f(x)=\left|x^{2}-3 x-4\right|$
83. $f(x)=\left|2(x-3)^{2}-5\right|$

Try Exercise Answers: Section 8.7

19. (a) Vertex: $(-2,1)$;

23. (a) Vertex: $(4,-7)$;
axis of symmetry: $x=-2$;
axis of symmetry: $x=4$;
(b)

(b)

24. (a) Vertex: $\left(\frac{5}{6}, \frac{1}{12}\right)$; axis of symmetry: $x=\frac{5}{6}$; maximum: $\frac{1}{12}$; (b)

25. $(-0.5,-6.25)$ 49. $(3-\sqrt{6}, 0),(3+\sqrt{6}, 0) ;(0,3)$
26. $g(x)=0.45 x^{2}-1.72 x+12.92$

Answers to Exercises 49, 50, 56-58, 71-74, and 78-83 are on p. IA-20.

